Solvent Effects on Chemical Processes. Part 7.[‡] Quantitative Description of the Composition Dependence of the Solvent Polarity Measure $E_T(30)$ in Binary Aqueous–Organic Solvent Mixtures

Raymond D. Skwierczynski and Kenneth A. Connors* School of Pharmacy, University of Wisconsin, Madison, Wis. 53706, USA

The solvation effect component of the phenomenological model of solvent effects is applied to $E_{\tau}(30)$, the molar transition energy of the Dimroth-Reichardt betaine, in binary aqueous-organic solvents. The dependence of $E_{\tau}(30)$ on x_2 , the mole fraction of organic cosolvent, can be quantitatively described for all 17 systems studied. New data are given for 9 of these systems. It is found that a 1-parameter model suffices to describe the composition dependence of the highly polar cosolvents, whereas a 2-parameter model is needed to account for other cosolvents, which yield a nonhyperbolic composition dependence. The solvation parameters, which are exchange equilibrium constants, yield correlations suggesting their positive dependence on cosolvent hydrophobicity and electron-pair donor ability.

The phenomenological model of solvent effects developed in our laboratory writes the overall effect as the sum of effects arising from solvent-solvent interactions (the general medium effect), solvent-solute interactions (the solvation effect), and solute-solute interactions (the intersolute effect). The parameters of the model, which are given physical meaning by the theory, are extracted by fitting the appropriate equation to experimental data consisting of free energy changes as a function of solvent composition. This approach provides excellent descriptions of solvent effects, in aqueous-organic mixtures, on solubility,¹⁻³ surface tension⁴ and molecular complex formation.⁵⁻⁶ In the present paper we extend the approach to the description of solvent effects on electronic absorption spectra. For this purpose we choose to study the Dimroth-Reichardt pyridinium N-phenoxide betaine, whose molar transition energy, commonly symbolized $E_{T}(30)$, is widely used as an empirical measure of solvent polarity.^{7,8} [For typographical simplicity we will usually represent $E_{\rm T}(30)$ as $E_{\rm T}$.]

We are concerned here with the dependence of $E_{\rm T}$ on solvent composition in binary aqueous-organic solvent mixtures covering the entire composition range. Bosch and Rosés⁹ and Langhals^{10,11} have been able to describe the composition dependence of $E_{\rm T}$ for certain solvent mixtures, but heretofore a general quantitative description has not been available. We apply our phenomenological model to this problem.

Theory.—The concentration of the solute (the Dimroth-Reichardt betaine) is always very low, so solute-solute interactions are negligible and the intersolute effect makes no significant contribution to the observed solvent effect. Moreover, because of the Franck-Condon principle, according to which the atomic nuclei undergo no sensible motion on the time scale of the electronic transition, the cavity containing the solute molecule does not change its size or shape, so the general medium effect (which we model in terms of a cavity approach) likewise makes no contribution. We are left only with the solvation effect.

Our theory treats the solvation effect in terms of competitive exchange equilibria between solvent component 1 (water, W, in the present study) and solvent component 2 (organic cosolvent, M) for solute (R). A general treatment can be given, but is not needed, for the two simplest cases suffice to describe all systems. First consider this 1-step (2-state) exchange process, shown as Scheme 1.

$$RW + M \stackrel{K_1}{\Longrightarrow} RM + W$$

Scheme 1

Here K_1 is the exchange constant for the competition between the fully hydrated (RW) and fully cosolvated (RM) states. Defining the fractions in these two states as F_W and F_M , where $F_W + F_M = 1$, it is easily possible to relate the fractions to K_1 and the mole fractions x_1 and x_2 of solvent components 1 and 2 by eqn. (1).

$$F_{\mathbf{W}} = \frac{x_1}{x_1 + K_1 x_2}; \quad F_{\mathbf{M}} = \frac{K_1 x_2}{x_1 + K_1 x_2} \tag{1}$$

We proceed by writing $E_{\rm T}$ at any cosolvent concentration x_2 as an average of $E_{\rm T}$ for RW and $E_{\rm T}$ for RM, weighted by the fractions of these species [eqn. (2)].

$$E_{\mathrm{T}}(x_2) = F_{\mathrm{W}}E_{\mathrm{T}}(\mathrm{W}) + F_{\mathrm{M}}E_{\mathrm{T}}(\mathrm{M})$$
(2)

Algebraic combination and rearrangement leads to eqn. (3)

$$\Gamma = \frac{E_{\rm T}(x_2) - E_{\rm T}(W)}{E_{\rm T}(M) - E_{\rm T}(W)} = \frac{K_1 x_2}{x_1 + K_1 x_2}$$
(3)

 $E_{\rm T}({\rm W})$ and $E_{\rm T}({\rm M})$ are experimentally accessible as the values of $E_{\rm T}$ when $x_2 = 0$ and 1, respectively. Thus Γ is measured as a function of x_2 , and K_1 is obtained by fitting eqn. (3) to the data. The method of Bosch and Rosés⁹ is formally similar to the above treatment.

Many systems cannot be described by eqn. (3) over the entire composition range, and in these cases we expand the solvation description to a 2-step (3-state) process, shown in Scheme 2.

$$RW_2 + M \stackrel{\kappa_1}{\Longrightarrow} RWM + W$$
 (a)

$$RWM + M \stackrel{K_2}{=} RM_2 + W \qquad (b)$$

Scheme 2

[‡] Parts 1-6, see refs. 1-6.

A similar treatment¹ gives eqns. (4) and (5) for the fractions F_{WM} and F_{MM} .

$$F_{\rm WM} = \frac{K_1 x_1 x_2}{x_1^2 + K_1 x_1 x_2 + K_1 K_2 x_2^2} \tag{4}$$

$$F_{\rm MM} = \frac{K_1 K_2 {x_2}^2}{{x_1}^2 + K_1 x_1 x_2 + K_1 K_2 {x_2}^2} \tag{5}$$

In addition, since F_{WW} and $F_{WM} + F_{MM} = 1$, the corresponding result for F_{WW} is obvious.

The weighted average for this 2-step case is, by analogy with eqn. (2), as shown in eqn. (6).

$$E_{\mathrm{T}}(x_2) = F_{\mathrm{WW}}E_{\mathrm{T}}(\mathrm{WW}) + F_{\mathrm{WM}}E_{\mathrm{T}}(\mathrm{WM}) + F_{\mathrm{MM}}E_{\mathrm{T}}(\mathrm{MM})$$
(6)

At this point we are required to introduce an assumption about the quantity $E_{\rm T}(WM)$, which is not susceptible to direct measurement. We provisionally postulate that $E_{\rm T}(WM) = [E_{\rm T}(WW) + E_{\rm T}(MM)]/2$, and proceed as before, obtaining eqn. (7).

$$\Gamma = \frac{E_{\rm T}(x_2) - E_{\rm T}(\rm WW)}{E_{\rm T}(\rm MM) - E_{\rm T}(\rm WW)} = \frac{K_1 x_1 x_2 / 2 + K_1 K_2 x_2^2}{x_1^2 + K_1 x_1 x_2 + K_1 K_2 x_2^2} (7)$$

Notice that Γ for the 1-step model [eqn. (3)] is equal to $F_{\rm M}$, whereas Γ for the 2-step model [eqn. (7)] is equal to $F_{\rm WM}/2 + F_{\rm MM}$. [$E_{\rm T}(W)$ in eqn. (3) and $E_{\rm T}(WW)$ in eqn. (7) are identical quantities, of course, as are $E_{\rm T}(M)$ and $E_{\rm T}(MM)$].

Experimental

Materials.—The Dimroth-Reichardt dye [2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate] was purchased from Aldrich Chemical Co. and used directly. Water was purified with a Sybron/Barnstead PCS System consisting of a prefilter and organic, ion-exchange and microfilter cartridges. The organic cosolvents were of analytical or HPLC grades.

Apparatus.—Spectrophotometric measurements were made with an On Line Instruments Systems (OLIS)-modified Cary 14 spectrophotometer interfaced to an IBM PC AT computer. The cell compartments were thermostatted at 25.0 °C.

Procedures.—Binary aqueous—organic solvent mixtures were prepared gravimetrically. The concentration of dye was 0.10 mmol dm⁻³ in each system except for pure water, which was saturated with the solute. Each solution was scanned four times; absorbance readings were collected at 1.0 nm intervals. From the spectrum, λ_{max} for the solvatochromic $\pi \rightarrow \pi^*$ absorption band was determined. The transition energy was calculated with eqn. (8)

$$E_{\rm T}/\rm kcal\ mol^{-1} = \frac{28\ 591.5}{\lambda_{\rm max}/\rm nm}$$
(8)

Results

Table 1 gives measured $E_{\rm T}$ values for nine aqueous-organic solvent mixtures over the full composition range from $x_2 = 0$ to $x_2 = 1$. Some of these systems have been studied by other workers; we repeated the work because we wanted a large number of data points so as to test our model equations. We did use literature data for several other solvent systems; data on 1,4-dioxane and tetrahydrofuran are from Krygowski *et al.*;¹²

Table 1 $E_{\rm T}$ Values for aqueous-organic solvent mixtures

 <i>x</i> ₂	λ _{max} /nm	$E_{\rm T}/{\rm kcal}~{\rm mol}^{-1}$
Methanol		
0.000	453	63.1
0.098	471	60.7 50.9
0.221	485	59.0
0.295	494	57.9
0.382	496	57.6
0.480	507	56 5
0.612	507	56.4
0.719	510	56.1
0.//4	510	55.4
1.000	516	55.4
F .1 1		
Ethanol	462	(1.0
0.033	463 476	61.8 60.1
0.113	492	58.1
0.163	509	56.2
0.223	515 527	55.5 54 3
0.321	530	53.9
0.559	535	53.4
0.640	541	52.8
0.739	545 546	52.5 52.4
0.940	550	52.0
1.000	553	51.7
Propan-1-ol		
0.026	466	61.4
0.040	494	59.7 57.9
0.072	509	56.2
0.091	520	55.0
0.134	528 529	54.2 54.0
0.270	539	53.0
0.366	538	53.1
0.425	540 546	52.9 52.4
0.581	549	52.1
0.687	555	51.5
0.818	560	51.1
1.000	564	50.7 50.7
Propan-2-ol	1(2)	(1.0
0.025	40 <i>3</i> 476	60.1
0.088	506	56.5
0.129	522	54.8
0.180	529 541	54.0 52.8
0.364	547	52.3
0.421	554	51.6
0.491	556 576	51.4
0.683	576	49.6
0.821	576	49.6
0.923	582	49.1
1.000	J Y I	40.4
Ethane-1,2-di	ol 463	61.8
0.073	467	61.2
0.115	472	60.6
0.168	480	59.6
0.247	480	59.0 58.8
0.433	494	57.9
0.494	499	57.3

Table 1	(continued)
---------	-------------

<i>x</i> ₂	$\lambda_{\rm max}/{\rm nm}$	$E_{\rm T}/{\rm kcal}~{\rm mol}^{-1}$
 Ethane-1,2-	diol	
0.566	498	57.4
0.648	498	57.4
0.746	503 510	56.8 56.1
0.801	510	56.1
1.000	510	56.1
Dimethyl su	lforide	
0 027	470	60.8
0.059	476	60 .1
0.096	489	58.5
0.142	499 514	57.3
0.279	527	54.3
0.375	554	51.6
0.505	577	49.6
0.590	605	47.4
0.829	614	46.6
0.925	628	45.5
1.000	639	44.7
Acetone		
0.025	469	61.0
0.056	483 492	59.2 58.1
0.134	504	56.7
0.204	519	55.1
0.279	531	53.8
0.435	550	52.0
0.504	552	51.8
0.587	563	50.8
0.693	570 586	50.2 48.8
0.825	595	48.1
0.890	604	47.3
0.924	636 644	45.0
1.000	679	42.1
Acetonitrile		
0.017	468	61.1
0.036	477	59.9
0.056	477	59.9
0.077	477	59.9 58.7
0.124	489	58.5
0.151	497	57.5
0.179	502 504	57.0 56 7
0.244	509	56.2
0.283	510	56.1
0.324	514	55.6
0.370	513 517	55.7
0.481	517	55.3
0.547	521	54.9
0.627	529 532	54.0 53.7
0.823	544	52.6
0.837	545	52.5
0.893	559	51.1
0.918	505 576	50.0 49.6
0.973	592	48.3
1.000	640	44.7
N,N-Dimethy	ylfo rm amide	
0.025	467	61.2
0.055	480	59.6
0.090	490 503	56.8
		- 5.0

 Table 1 (continued)

<i>x</i> ₂	$\lambda_{\rm max}/{\rm nm}$	$E_{\rm T}/{\rm kcal}~{\rm mol}^{-1}$	
N,N-Dim	ethylformamide	;	
0.184	507	56.4	
0.265	532	53.7	
0.359	544	52.6	
0.417	557	51.3	
0.487	562	50.9	
0.572	588	48.6	
0.680	600	47.7	
0.819	622	46.0	
0.921	642	44.5	
1.000	653	43.8	

Fig. 1 Plot of the experimental variable Γ against mole fraction of organic component x_2 for the methanol-water system. The points are experimental (calculated from Table 1) and the line is drawn with eqn. (3) and the parameter value in Table 2.

Fig. 2 Plot of Γ against x_2 for the acctone-water system. The points are experimental and the line is drawn with eqn. (7)

propane-1,2-diol and propane-1,3-diol data are from Kosower $et \ al.$;¹³ and the amine results are from Dimroth and Reichardt.¹⁴ In all, we have analysed 17 cosolvent systems.

The solvents appear to fall into two classes. Solvents whose behaviour can be described by eqn. (3) we will call 1-step solvents; those described by eqn. (7) we call 2-step solvents. (Of course it is always possible to achieve better curve-fits by increasing the number of parameters in the model equation, but we have adopted the parsimony principle and have used the minimum number of parameters required to give curve-fits commensurate with the experimental uncertainties.)

Figs. 1, 2 and 3 show several solvents and the curve-fits achieved with this treatment. Fig. 1 is of the methanol system, a

Table 2 Model parameter values for the dependence of $E_T(30)$ on solvent composition in aqueous-organic mixtures^a

No.	Organic solvent	Class	K_1	<i>K</i> ₂	$E_{\mathrm{T}}(30)^{b}$	log P ^c
 2	Methanol	1-step	4.4(0.2)	_	55.4	-0.74
5	Ethanol	-	6.1(0.4)	_	51.7	-0.32
6	Propan-1-ol		12.2(1.1)	_	50.7	+0.34
7	Propan-2-ol		6.4(0.5)	_	48.4	0.00
1	Ethane-1,2-diol		3.9(0.3)	_	56.1	- 1.93
4	Propane-1,2-diol		7.1(0.5)	_	54.0	-1.35
3	Propane-1.3-diol		7.3(0.2)	_	54.9	-1.64
8	Dimethyl sulfoxide		2.8(0.1)	_	44.7	-2.03
11	Acetone	2-step	10.1(0.7)	0.18(0.01)	42.1	-0.24
9	Acetonitrile	-	7.9(0.5)	0.05(0.01)	44.7	-0.34
16	Dioxane		8.8(0.7)	0.28(0.02)	36.0	-0.42
14	Tetrahydrofuran		22.3(1.2)	0.17(0.01)	37.4	$+0.22^{d}$
10	Dimethylformamide		8.8(0.9)	0.74(0.07)	43.8	-0.73
17	Piperidine		20.1(1.0)	0.44(0.03)	35.5	+0.85
15	2.6-Lutidine		49.6(6.4)	0.34(0.04)	36.7	+2.30
13	2-Picoline		31.0(3.3)	0.42(0.04)	38.3	+1.06
12	Pyridine		18.5(1.7)	0.42(0.04)	40.3	+0.65

^a Quantities in parentheses are standard deviations. ^b Of the pure solvent. ^c From ref. (15) except as noted. ^d From ref. (16).

Fig. 3 Plot of Γ against x_2 for the piperidine-water system. The points are experimental and the line is drawn with eqn. (7)

1-step solvent; such a solvent shows a hyperbolic concentration dependence characteristic of a simple 1:1 stoichiometric binding relationship. Figs. 2 and 3 show 2-step solvents, the acetone curve being 'classical' in its sigmoid appearance, evidence of a 3-state process; the piperidine curve shows the inflection point characteristic of 2-step behaviour, but the curve is less symmetrical than the acetone curve. The quality of the curve-fits in these figures is typical; as a curve-fit criterion we define s, the percentage standard deviation of the experimental points about the fitted line, by eqn. (9) where n is the number of

$$s = 100 \left[\frac{\Sigma (\Gamma_{\text{calc}} - \Gamma_{\text{obs}})^2}{n-2} \right]^{\frac{1}{2}}$$
(9)

data points in a study, including the two pure solvents. The measure s had an average value of 2.9% for the 17 solvent systems; for methanol (Fig. 1), s = 2.7%, for acetone (Fig. 2), s = 1.8% and for piperidine (Fig. 3), s = 1.7%.

The model parameter values were determined by fitting experimental data to either eqns. (3) or (7), as appropriate, by nonlinear regression with the program Systat[®]. Table 2 gives the parameter values and their uncertainties. [The table also lists values of $E_{\rm T}(30)$ and log P of the pure solvents for later convenience; P is the octan-1-ol-water partition coefficient.]

Discussion

Classification of Solvents.—There is a connection between the class assignment of the organic cosolvent and the $E_{\rm T}$ value of the pure cosolvent, as revealed by the listing in Table 2. If $E_{\rm T}$ is greater than about 48, the solvent is a 1-step solvent, and if $E_{\rm T}$ is less than about 42, it is a 2-step solvent. Within the range $42 \le E_{\rm T} \le 48$ a solvent may belong to either class. Inspection of the experimental curve of measured $E_{\rm T}$ against x_2 usually allows the assignment to be made; 1-step solvents show a simple hyperbolic binding isotherm, whereas 2-step solvents show an inflection point. (It is possible that the application of two criteria to classification may be unambiguous; thus on the basis of the 17 solvents studied we can say that a solvent is a 1-step solvent if its $E_{\rm T}$ is greater than 47 or its log P is less than -1.)

It might be questioned whether classification into two groups is needed, inasmuch as the 'simpler' 1-step solvents could be analysed as 2-step solvents. This is certainly possible, but it does not seem to be justified. When this treatment is applied, the values of K_1/K_2 (for 1-step solvents) turn out to be about 4 (within a factor of 2). This means, at least approximately, that if these are 2-step solvents, the putative binding sites are identical and independent, and a single parameter, K_1 , suffices to describe the results. Thus to attribute additional meaning to a second parameter would be unjustified. In such cases, the K_1 evaluated from a 2-step treatment is about twice that found from a 1-step treatment [as is expected from substituting $K_2 = K_1/4$ into eqn. (7)]. This phenomenon, in which a 2-step treatment sometimes yields the result $K_1/K_2 \approx 4$, arises also in the analysis of surface tension data.⁴

The characteristic shape of 2-step solvent systems arises from the parameter behaviour in which $K_1 > 1$ and $K_2 < 1$. Chemically this implies that the first organic cosolvent molecule preferentially displaces a water molecule from the solvation shell ($K_1 > 1$), whereas the last water molecule is difficult to dislodge. (We have elsewhere⁶ noted that a 2-step, 3-state treatment may function as a widely applicable description because the intermediate state may actually represent an assemblage of partially hydrated, partially cosolvated states.) A species distribution diagram for acetone is shown in Fig. 4, which displays the dominance of the partially cosolvated species over a very wide composition range. Langhals¹⁷ has proposed a method using the Dimroth-Reichardt dye as a probe for determining the water content of organic solvents; clearly this method will have a higher sensitivity for 2-step

Fig. 4 Species distribution diagram for the acetone-water system. The quantities F_{WW} , F_{WM} , and F_{MM} represent fractions of solute in the fully hydrated, partially cosolvated, and fully cosolvated forms, respectively.

Fig. 5 Plot of log K_1 against log P; data are from Table 2. The circles represent 1-step solvents and the squares, 2-step solvents. The numbers identify solvents according to the code in Table 2.

 Table 3
 Correlations of exchange constants with empirical solvent measures

Correlation equation	r	n	
$\log K_1 = 0.265 \log P + 1.06$	0.904	17	
$\log K_1 = -0.032E_T + 2.44$	-0.711	17	
$\log (K_1 \text{ or } K_1 K_2)^a = 1.47\beta - 0.37$	0.732	11	
$\log (K_1 \text{ or } K_1 K_2)^a = 0.016 \Delta H^\circ - 1.06$	0.872	7	
$\log K_2 = 2.30\beta - 1.82$	0.826	6	
$\log K_2 = 0.0131 \Delta H^\circ - 1.83$	0.794	6	

^a K_1 for 1-step solvents; K_1K_2 for 2-step solvents.

solvents because of the K_2 -determined gradient of the function Γ at high values of x_2 .

Parameter Correlations.—The parameter values given in Table 2 can be correlated with several empirical measures. Perhaps the most useful, as the most general, of these is shown in Fig. 5 as a plot of log K_1 against log P. This quite convincing trend of log K_1 with log P permits log K_1 to be predicted for a cosolvent to within 0.3 unit in log K_1 . Table 3 gives the equation of the line in Fig. 5, and it also lists some other correlations that

have been found. In this table, log P and $E_{\rm T}(30)$ for the pure solvents are given in Table 2; β is the Taft-Kamlet solvatochromic measure of solvent hydrogen bond basicity; ¹⁸ and ΔH° is the enthalpy change for boron trifluoride-solvent Lewis acidbase complex formation in dichloromethane.¹⁹ The premise behind the plots of log K_1 (for 1-step solvents) or log K_1K_2 (for 2-step solvents) is that these quantities are comparable because each (K_1 or K_1K_2) is responsible for defining the overall conversion of fully hydrated to fully cosolvated solute in its respective class.

In considering the meaning of these correlations it is helpful to write eqns. (3) and (7) in the form of eqns. (10) and (11).

$$\delta_{\rm M} E_{\rm T} = \frac{\Delta E_{\rm T} K_1 x_2}{x_1 + K_1 x_2} \tag{10}$$

$$\delta_{\rm M} E_{\rm T} = \frac{\Delta E_{\rm T} K_1 x_1 x_2 / 2 + \Delta E_{\rm T} K_1 K_2 x_2^2}{x_1^2 + K_1 x_1 x_2 + K_1 K_2 x_2^2}$$
(11)

In these equations $\delta_M E_T = E_T(x_2) - E_T(W)$ and $\Delta E_T = E_T(M) - E_T(W)$. Thus ΔE_T gives the maximum amplitude of the dependent variable $\delta_M E_T$, whereas K_1 and K_2 determine its path. The correlations in Table 3 concern K_1 and K_2 , although, since there is some relationship between K_1 and E_T , the amplitudes and paths are not fully independent.

We have seen that the exchange constants are correlated with log P, β and ΔH° . Together, these correlations implicate hydrophobicity (through log P) and electron-pair donor ability (through β and ΔH°) as dominant solvent characteristics that control K_1 and K_2 .

Conclusions

(1) The dependence of $E_{\rm T}(30)$ on solvent composition in binary aqueous-organic solvent mixtures can be quantitatively described over the *entire* composition range by the phenomeno-logical model of solvation effects.

(2) Organic cosolvents are classified as '1-step' solvents if a single solvation equilibrium constant, K_1 , suffices to describe the E_T behaviour, or as '2-step' solvents if two constants, K_1 and K_2 , are required. 1-step solvents tend to be highly polar or to possess hydroxy groups. The separation of organic solvents into two classes based on polarity has also been noticed in surface tension⁴ and solubility³ analyses.

(3) The solvation parameters are positively correlated with the empirical solvent measures log P, ¹⁵ β , ¹⁸ and ΔH° , ¹⁹ implying that solvent hydrophobicity and electron-pair donor ability are solvent characteristics controlling these parameters.

Acknowledgements

This work was supported in part by a grant from Glaxo, Inc. R. D. S. was a Fellow of the American Foundation for Pharmaceutical Education and of Bristol-Myers Squibb, Inc.

References

- 1 D. Khossravi and K. A. Connors, J. Pharm. Sci., 1992, 81, 371.
- 2 D. Khossravi and K. A. Connors, J. Pharm. Sci., 1993, 82, 817.
- 3 J. M. LePree, M. J. Mulski and K. A. Connors, submitted for publication.
- 4 D. Khossravi and K. A. Connors, J. Solution Chem., 1993, 22, 321.
 5 K. A. Connors, M. J. Mulski and A. Paulson, J. Org. Chem., 1992, 57, 1794.
- 6 K. A. Connors and D. Khossravi, J. Solution Chem., 1993, 22, 677.
- 7 K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Justus Liebigs Ann. Chem., 1963, 661, 1.
- 8 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn., VCH, Weinheim, 1988, ch. 7.

- 9 E. Bosch and M. Rosés, J. Chem. Soc., Faraday Trans., 1992, 88, 3541.
- 10 H. Langhals, Angew. Chem., Int. Ed. Engl., 1982, 21, 724.
- H. Langhals, Similarity Models in Organic Chemistry, Biochemistry, and Related Fields, eds., R. I. Zalewski, T. M. Krygowski and J. Shorter, Elsevier, Amsterdam, 1991, ch. 6.
- 12 T. M. Krygowski, P. K. Wrona, U. Zielkowska and C. Reichardt, *Tetrahedron*, 1985, 40, 4519.
- 13 E. M. Kosower, H. Dodiuk, K. Tanizawa, M. Ottolenghi and N. Orbach, J. Am. Chem. Soc., 1975, 97, 2167.
- 14 K. Dimroth and C. Reichardt, Z. Anal. Chem., 1966, 215, 344.

- 15 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971, 71, 525.
- 16 N. Funasaki, S. Hada and S. Neya, J. Phys. Chem., 1985, 89, 3046.
- 17 H. Langhals, Anal. Lett., 1990, 23, 2243.
- 18 M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Org. Chem., 1983, 48, 2877.
 19 P.-C. Maria and J.-F. Gal, J. Phys. Chem., 1985, 89, 1296.

Paper 3/06277E Received 20th October 1993 Accepted 6th December 1993